Improving the Envelope of the LMI Optimization using the Youla Parametrization
نویسندگان
چکیده
RÉSUMÉ. Cet article présente une approche de résolution des problèmes d’optimisation multicritères basant su l’outil LMI. Notre objectif est de chercher un contrôleur stabilisant le système avec des contraintes fréquentielles et/ou temporelles. Cette conception est fondée sur la paramétrisation de Youla; cette paramétrisation est basée sur un contrôleur initial défini par la combinaison convexe des trois contrôleurs connus tel que: LQR, H2 et H∞ en utilisant l’optimisation sous contraintes LMI (Linear Matrix Inequality), via ce contrôleur initial proposé on peut agrandir l’enveloppe d’optimisation LMI. ABSTRACT. This article presents an approach for resolution of the multi-objective problems. Our objective is to design a controller stabilizing a system with constraints. This research is based on the Youla parametrization by using a new initial controller defined by the convex combination of the known controllers such as LQR, H2 and H∞ via LMI optimization (Linear Matrix Inequality). Our aim is to augment the LMI optimization envelope. MOTS-CLÉS : La paramétrisation de Youla, Synthèse: LQR, H2 et H∞, Combinaison convexe, LMI.
منابع مشابه
An initial corrector using H2 Approach for Youla Parametrisation via LMI Optimization
This paper presents an approach by multiobjective optimization of the output feedback design in discrete time. The objective is to search a controller stabilizing the system with schedules charges temporal or frequential constraints. This is achieved by using the Youla parametrization based on initial corrector H2, combined with different Lyapunov functions; via LMI (Linear Matrix Inequality) o...
متن کاملPolynomial Methods and Convex Optimization for the Control of Input Constrained Systems
A polynomial approach is pursued for locally stabilizing discrete-time linear systems subject to input constraints. Using the Youla-Ku cera parametrization and geometric properties of polyhedra and ellipsoids, the problem of simultaneously deriving a stabilizing controller and the corresponding stability region is cast into a standard LMI problem. The approach is illustrated by a numerical exam...
متن کاملMulti-objective Synthesis Using LMI Formulations for Application of the Cutting Plane Algorithm
The problem of designing a controller to meet different specifications or deciding that no such controller exists is addressed in this paper by linking three types of tools: the Youla parameterization allows searching for a controller in a convex set; formulations using Linear Matrix Inequalities (LMI) are proposed for different practical specifications; the corresponding convex problem is solv...
متن کاملThe Control Parametrization Enhancing Technique for Multi-Objective Optimal Control of HIV Dynamic
In this paper, a computational approach is adopted for solving a multi-objective optimal control problem (MOOCP) formulation of optimal drug scheduling in human immunodeficiency (HIV) virus infected by individuals. The MOOCP, which uses a mathematical model of HIV infection, has some incompatible objectives. The objectives are maximizing the survival time of patients, the level of D...
متن کاملA Convex Method for the Parametric Insensitive H2 Control Problem
Contrary to the standard H2 problem, the so-called insensitive H2 problem makes use of a criterion that takes explicitly into account the parametric sensitivity of the closed loop system. This problem has already been re-formulated as a structured H2 problem that is known to be equivalent to a specific BMI optimization problem when assuming full order controller. This paper presents a new formu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stud. Inform. Univ.
دوره 9 شماره
صفحات -
تاریخ انتشار 2011